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A fundamental problem for all educational reform efforts is one of specifying in practical terms
just what the reform requires of teachers and students. In addressing it, educational designers have
introduced the term “accountability” to characterize something missing in classroom discourse. This
term, however, held special significance in the writings of the American sociologist Harold Garfinkel.
Livingston applied Garfinkel’s treatment of accountability to understanding the lived-work of doing
mathematics, particularly proving work. We examine an 8th-grade student’s presentation during a
Japanese geometry lesson as a proof-account. Within it we see elements of both classical and natural
accountability placed on display.

A proof is the discovery of the reasoning unique to that particular proof made available through the
material-specific description of it. — Livingston (2008, p. 854)

Within mathematics education there has been strong and sustained advocacy for what might be
termed, borrowing a phrase from Sfard and Kieran (2001), the “learning-by-talking” thesis. The
thesis, plainly stated, is that mathematical learning is enhanced in the context of interaction that
is recognizably and thoughtfully mathematical (e.g., Abrahamson, Gutiérrez, & Baddorf, 2012;
Ball & Bass, 2000; Hiebert et al., 1996; Hufferd-Ackles, Fuson, & Sherin, 2004; Lampert, 1990;
Lampert & Cobb, 2003; Maher, Davis, & Alston, 1991; Moschkovich, 2008; Romberg & Kaput,
1999; Schoenfeld, 1991; Solomon & Nemirovsky, 2005; Stein, Engle, Smith, & Hughes, 2008).
This leaves, however, the difficult question of exactly what we want students and teachers to say
and do when they are talking mathematics. We might call this the specification problem.

Correspondence should be sent to Timothy Koschmann, Department of Medical Education, Southern Illinois
University, P.O. Box 19681, Springfield, IL 62794-9681. E-mail: tkoschmann@siumed.edu
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2 KOSCHMANN AND MORI

Michaels, O’Connor, and Resnick (2008) sought to advance the learning-by-talking agenda
with a suggestion that talk in mathematics classrooms must not only touch on mathemati-
cal topics, but must also be “accountable.” This, they argued, entails students displaying an
accountability to (a) standards of “respectful and grounded discussion” (p. 286), (b) the factual
knowledge of the discipline (e.g., mathematics, science, social studies), and (c) the “standards of
reasoning” (p. 286) used therein. The authors’ Accountable Talk

®
proposal is designed as a way

of introducing a more “deliberative” (p. 293) form of discourse to the classroom. It represents a
possible solution to the specification problem.

It is interesting that Michaels et al. (2008) fixed upon accountability as the missing
ingredient in classroom talk. Accountability, as it happens, also holds central place in the
writings of the American sociologist Harold Garfinkel. With the publication of Studies in
Ethnomethodology Garfinkel (1967) laid the groundwork for a new program of inquiry within
sociology. Ethnomethodology (EM) took as a founding assumption that “the activities whereby
members produce and manage settings of organized everyday affairs are identical with members’
procedures for making those settings ‘account-able’” (p. 1). This property is what makes social
action possible. It is also what holds social institutions together, giving them stability and render-
ing them orderly. In later writing, Garfinkel (2002) was to make a distinction between classical
and natural accountability. In the everyday sense of the term, one might say, “I am accountable
to my boss to be at work on time” or “You are accountable to your clients to provide acceptable
service.” In this way we are all accountable in our various roles as workers, citizens, parents,
teachers, and so on. These are classical forms of accountability.

But there is another kind of accountability that comes before this: We are all accountable, one
to the other, to conduct ourselves in ways that are intelligible to others, to act in ways that are
sensible. Garfinkel (1967) wrote:

In exactly the way that persons are members to organized affairs, they are engaged in serious and
practical work of detecting, demonstrating, persuading through displays in the ordinary occasions of
their interactions the appearances of consistent, coherent, clear, chosen, planful arrangements. (p. 34)

An account, in ordinary parlance, is a report or description of a state of affairs, as when a
ledger offers an account of a series of financial transactions. When we engage in social inter-
action, our conduct stands as “‘the document of’, as ‘pointing to’, as ‘standing on behalf of’ a
pre-supposed underlying pattern” (Garfinkel, 1967, p. 78). It gives an account or provides doc-
umentary evidence for whatever we might be doing together at the moment—standing in line,
waiting for bus, making a purchase, and so on. Garfinkel (1967) stipulated that any social “setting
organizes its activities to make its properties as an organized environment of practical activi-
ties detectable, countable, recordable, reportable, tell-a-story-about-able, analyzable—in short,
accountable [emphasis added]” (p. 33). Accountability, in this way, plays an essential role in
structuring our social world. Garfinkel elaborated, “Members’ accounts, of every sort, in all their
logical modes, with all of their uses, and for every method for their assembly are constituent
features of the settings they make observable” (p. 8). This is a natural form of accountability.

Natural accountability and the ways in which it is achieved in various work settings became a
focus of EM-informed investigations. One of Garfinkel’s students, Eric Livingston (1983), under-
took a study of mathematicians’ work, focusing in particular on “the accountability of the work
of proving” (p. 343). His project focused on the published proofs for Gödel’s incompleteness
theorems. For Livingston, the lived work of mathematics is not to be found in completed proofs,
but rather in the settings in which “provers come together and do, for and among each other, the
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 3

recognizably adequate work of doing recognizably adequate mathematics“ (p. 28). It is here, he
argued, that the professional discipline is instructed and in which it is “sustained and renewed,
and that it evolves, [and] is revitalized” (p. 28). It has long been recognized that proofs are not just
ways of reporting mathematical findings, but also a method for generating new knowledge (cf.
Lakatos, 1963; Pólya, 1954). Livingston argued that the work of doing mathematics is integrally
tied to a process of discovery and the process of discovery recurs each and every time one works
through a proof.

Livingston considered a mathematical proof to have two components: its “material-specific
description” (Livingston, 2008, p. 854), the proof-account and the “the-practices-of-proving-
to-which-that-proof-is-irremediably-tied” (Livingston, 1983, p. 308). Livingston (1987) wrote
that the proof-account, i.e. the proof’s “material-specific description” (Livingston, 2008, p. 854)
and the “the-practices-of-proving-to-which-that-proof-is-irremediably-tied” (Livingston, 1983,
p. 308). The proof-account and the practices of following what the proof-account describes rep-
resent what Garfinkel (2002) termed a “Lebenswelt pair” (pp. 187–190).1 In Ethnomethodology’s
Program, Garfinkel (2002) adopted the notational convention of flagging certain terms with aster-
isks to notify the reader that the terms should be read in special way, an EM-informed way.2

Utilizing the same notation, we refer to the proof-account/practices-of-proof-following pair as a
proof∗. A proof∗, then, is a Lebenswelt pair consisting of (a) a proof-account and (b) the practical
work of following it such that, on any particular occasion of proving, (a) represents a description
of (b).3 It is the natural accountability of the proof that holds the two elements together.

The current article builds upon Livingston’s conceptualization of proof-accounts and proof-
followings as naturally accountable pairs and applies it to the study of mathematical problem
solving in the classroom. We examine a presentation made by an eighth-grade geometry student
in a Japanese classroom. The student is presenting a solution to a posed problem, and the ade-
quacy of this solution must be demonstrated (cf. Lampert, 1990). The student, therefore, must
justify his solution, and the justification comes in the form of a logically constructed chain
of claims. In this way, the presentation constitutes a kind of proof-account. Our interest is in
examining the natural accountability of this presentation and in seeing what this might tell us
with respect to the specification problem.

ANALYSIS

Provers must “find” the proof in the figure. Provers inspect materially definite writings . . . , see
through the notational particulars . . . to what they represent, and organize, rearrange and rework
such displays to find gestalts of reasoning and practice adequate to a stated theorem. — Livingston
(1999, p. 869)

1The term Lebenswelt comes from Husserl (1970) and can be literally translated as ‘life-world.’ It is “the mundane
world of lived experience already existing as a product of the unreflecting cognitions of ordinary actors” (Heritage, 1984,
p. 44). Note the discovery that proofs have this paired structure is an ethnomethodological discovery. It was one of the
principal findings of Livingston’s thesis (1983).

2Examples would include: “read∗” (p. 146), “revealed details∗” (p. 187), “worksite details∗” (p. 187), “naturally
accountable details∗” (p. 188), “precise description∗” (p. 188), and most importantly “order∗” (p. 146, FN1).

3This reflexive definition closely resembles Garfinkel’s (2002) definition of an “instructed action” (pp. 105–106) and
this is not an accident. Both proof∗s and “instructed actions,” as Garfinkel conceptualizes them, are Lebenswelt pairs.
Indeed, a proof-account might be considered to be a special kind of instruction.
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4 KOSCHMANN AND MORI

A “Tutorial Problem”

The phenomena of natural accountability are indexical matters. Garfinkel wrote exten-
sively of “occasioned” (Garfinkel, 2002, pp. 204–205) and “indexical” (Heritage, 1984,
pp. 142–144) expressions. These are expressions that have a sense wholly dependent upon their
settings of production. Common examples are expressions that contain personal deictics such as
you or me, spatial deictics like here and there, or temporal deictics such as now and then (con-
sult Chapter 2 in Levinson, 1983). The natural accountability of a proof is context-bound in the
precisely the same way—it is lodged within local, endogenous methods of production. Many of
the formal methods of social science research discard features of context in the pursuit of gen-
erality. To be able to make scientifically warranted claims, the thinking goes, one must isolate
oneself from individuating detail and focus instead on commonalities extracted from a multitude
of cases. The natural accountability of a proof∗, however, cannot be reduced to averages or other
measures of central tendency. To preserve these necessary linkages to context, Garfinkel (2002)
called for methods of study that rely upon “careful∗ descriptions” (p. 113) of individual situations
studied on a “case∗ by case∗” (p. 173) basis, recalling his instruction that these terms be read and
understood in an EM-informed way.

But it is not just the level of detail that separates EM-informed studies from other kinds of
inquiries. Garfinkel (2002) wrote that the phenomena of natural accountability “are ubiquitously
available to vulgar competence, and elusive—i.e., easy to do and recognize, and intractably dif-
ficult to make instructably observable” (p. 174). An ethnomethodologist, then, is faced with the
problem of explaining for any “social fact,” that is, recognized form of social activity, what it
is about the activity, “in its unmistakable, accountable orderliness, that makes it just this social
fact” (Garfinkel, 2002, p. 250). What we have been describing as a proof∗ can be thought of as a
particular kind of social fact—it is forged in interaction between the prover and proof follower.
The task for the ethnomethodologist is one of documenting how this is accomplished in any par-
ticular case. Like designers of educational reforms, ethnomethodologists are, in this way, also
confronted with a problem of specification. But, where instructional designers are engaged in a
principally prescriptive exercise, constructing behavioral criteria for successful implementation
of a reform effort, ethnomethodologists seek only to illuminate how a social fact comes to be.
Theirs is a purely descriptive undertaking.

Regarding the reflexive pair we have termed a proof∗, Garfinkel (2002) wrote, it “cannot be
read off the page no matter now talented a reader the mathematician is” (p. 188). A proof∗ is
an emergent phenomenon, one that is “developingly objective and developingly accountable”
(Garfinkel, 2002, p. 189). It is for this reason that it is only discoverable both for the participants
and for us as external observers. Garfinkel (2002), as a consequence, wrote, “EM’s findings
are tutorial problems” (p. 115). EM reports are designed to be read in two ways: as a “careful∗

description” (p. 149) and as instructions for how the things being described can be discovered
by the reader.4 It is in this spirit that the following account is offered. It seeks to document the
“revealed details∗” (Garfinkel, 2002, p. 187) of the student’s presentation as they emerge over
time. And in “mis-reading” (p. 149) this description as a set of instructions, it is hoped that the

4Garfinkel (2002) referred to this as “praxologizing” (p. 149) the description. For a critical take on Garfinkel’s notion
of tutorial problems and of “mis-reading” accounts, see Wilson (2003).
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 5

reader will come to discover the “gestalts of reasoning and practice” (Livingston, 1999, p. 869) it
might entail.5

Data Sources

Euclidian geometry courses are the place in the mathematics curriculum in which the rudi-
ments of proof are often first encountered (Herbst & Brach, 2006). The geometry lesson to be
described here was of particular interest because of its high degree of interactivity and its heavy
reliance on inscription. The lesson was captured as part of the Third International Mathematics
and Science Study (TIMSS) Videotape Classroom Study (Hiebert et al., 2003). This study, con-
ducted in two phases (one in 1995 and the other in 1999), was an ambitious effort to document
eighth-grade math and science instruction in eight participating countries (Australia, the Czech
Republic, Germany, Hong Kong, Japan, the Netherlands, Switzerland, and the United States).
It required multiple independent fieldwork teams that eventually taped more than 1,400 class-
room lessons conducted in eight different languages.6 It represents, therefore, one of the largest
and most diverse video-based corpora of classroom interaction available. Although access to the
TIMSS videocorpus is restricted, a subset of 28 “public release” lessons are available for study.
This report focuses on Lesson 744, one of the four public release lessons from Japan. The record-
ing used in this study can be found on the Talkbank website.7 It may be helpful for the reader to
download this recording for reference while reading this analysis.

Excerpt 1: “That is what we studied”

5Another example of a proof∗ presented as a tutorial problem can be found in Livingston (1987, Chapters 14–16).
6Classes in Hong Kong were mostly conducted in English; classes in Switzerland were conducted in German, French,

and Italian. Other languages included Czech, Dutch, and Japanese.
7http://talkbank.org/media/ClassBank/TIMSS-Math/Japan-unlinked/744/
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6 KOSCHMANN AND MORI

The transcript is a tool for cataloging observed action with a recording. A sample can be found
in Excerpt 1.8 Several features of this way of representing talk and visible action are worth noting.
As is frequently done in linguistic studies of non-English materials, the transcript is presented in
three tiers. The first is a phonetic transcription of the teacher’s (T) talk presented in translit-
erated Japanese (Roma-ji). Because timing and prosodic features of delivery (e.g., intonation,
volume, tempo) are crucially important to meaning construction, the talk is transcribed employ-
ing Conversation Analytic conventions.9 Japanese employs a subject–object–verb word order.

8The transcripts were prepared by one of the authors, a native speaker of Japanese.
9The full set of conventions is described in Jefferson (2004). In summary, numbers enclosed in parentheses represent

periods of silence measured to a tenth of a second. Brackets are used to mark talk or other forms of action delivered in
overlap. Use of standard punctuation marks such as periods and question marks denotes delivery with falling or rising
intonation resembling that ordinarily heard at the end of a sentence (or question). Colons are used to display sound
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 7

The second tier provides a literal translation ordered by Japanese syntax. Thus, lexical items are
replaced, one by one, by their English counterparts, and Japanese function words, which have
no direct English translation, are represented using special symbols.10 For example, the teacher’s
“takasa ga onajini naru kara” [0:01:22;25] is parsed as “height <subject marker> same to become
because.” Onajini, a conjugation of onaji and ni, is treated as separate morphemes. The resulting
literal translation is presented colloquially in the third tier as, “so their heights end up being the
same.” From the colloquial gloss, however, it is not possible to see how the talk is precisely coor-
dinated with other concurrent action, and so both literal and colloquial translations are needed
here.

Livingston (1983) reported, “A prover uses his embodied presence to the blackboard and to the
audience to achieve the exhibited precision of his work and talk” (p. 3). Our analysis, therefore,
cannot and should not be confined to the participants’ talk. Indeed, starting from McNeill’s (1979)
early study of gesture use among mathematicians and continuing to more recent work (see, e.g.,
Alibali & Nathan, 2012; Greiffenhagen & Sharrock, 2011; Hall & Nemirovsky, 2012; Núñez,
2008; Radford, Edwards, & Arzello, 2009), there is a growing consensus that mathematical sense-
making needs to be studied as a multimodal matter. To this end, also included in the transcript are
annotations describing various bodily actions conducted in concert with the talk. For example,
while the teacher states “at uhm the same base, or height” [0:00:57;13] he points two times toward
the computer screen. These pointing actions are durational events that occur in overlap with his
talk. For each item in the transcript (either annotation or attributed utterance), its start and ending
frame numbers (expressed in hours, minutes, seconds, and frames) are provided in the left-hand
column. The precise timing of overlap of talk and action is also marked within the transcript.
We see, for instance, the teacher’s first point to the screen (at [0:00:59;09]) occurs at the start of
the second syllable of teehen (base), and it is this temporal coordination that gives the manual
action its recognizable sense.

As part of the described lesson, two students presented alternative problem solutions at the
board. Our analysis focuses on the first of these presentations. Before launching into it, however,
we first explore how the problem was originally posed to the class.

Review of Prior Lesson: “That Is What We Studied”

As the lesson begins, the class is called to order by one of the students. Students are directed to
stand and bow to the teacher, who is positioned at the front of the room. The teacher offers a bow
in return. There are many things about this scene—how the room is furnished, the positioning of
its members, how participation is structured—that are immediately recognizable to all, even those
of us who have never visited a Japanese classroom. We experience a certain sense of familiarity
with this as a certain kind of institutional setting.

stretching. Text enclosed between degree signs represents talk delivered at diminished volume. Annotations are enclosed
in double parentheses and italicized.

10The following symbols are employed for Japanese function words: Cop (copula), FP (final particle), LK (linking
marker), Neg (negative), Nom (nominalizer), Top (topic marker), O (object), Q (question particle), QT (quotative particle),
and S (subject marker).
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8 KOSCHMANN AND MORI

FIGURE 1 The teacher uses the computer display to review the theorem.
[00:00:59;21].

The teacher switches on a computer monitor positioned to the left of the board and visible to
the class. Shown on the screen are two horizontal lines presented as parallel. Interposed between
the lines is a triangle, APB, with its base (labeled AB) situated on the lower of the two lines and
its apex, P, located on the upper (see Figure 1). Looking to the class, the teacher asks, “Uhm do
you remember what we did in the previous class?” [0:00:28;05], to which one student answers,
somewhat unhelpfully, “Math” [0:00:30;29]. The instructor reframes his question and addresses
it to a particular student, “Naito what kind of thing did we do?” [0:00:33;16]. The student is
uncertain how to respond, however, [0:00:35;23] and so the teacher walks toward the computer
monitor and suggests, “This, we studied” [0:00:44;06]. With this prompting, the student articu-
lates the gist of the previous lesson as “Triangles that exist at the place of parallel lines have the
same area” [0:00:48;16].

This summary is succinct. To “exist at the place of parallel lines” serves as a gloss for
something previously discussed and its understandability rests on prior, presumably shared,
understandings. The teacher ratifies this summarization [0:00:53;13] and proceeds to show how
it relates to the figure on the computer monitor.

Gesturally the teacher indicates the base (teehen) and height (takasa) of the triangle APB
(see Figure 1). Note in the excerpt how his pointing gestures are carefully coordinated with his
enunciation of these two geometric terms. Using the computer to drag the point P along the upper
line (see Figure 2), he illustrates a family of triangles having the same base (AB) and, because all
have their apex on the upper line, the same height. “Such triangles,” he reports, “all of them are
the same” [0:01:06;21]. They are what Ms. Naito had previously described as “triangles at the
place of parallel lines” and, by the theorem just articulated, they all have the same area.
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 9

FIGURE 2 The teacher demonstrates, “Such triangles are like this . . .”.

FIGURE 3 Computer-generated triangles illustrating the theorem.
[00:01:23;10].

That would seem to settle the matter, but the teacher continues with his review. He drops a
series of additional points (C, D, E, and F) on the upper line of the computer-based figure each
time leaving behind a formed triangle. He then uses the program to display the heights for each
of the triangles drawn (see Figure 3) and restates the theorem as, “their heights end up being the
same and so, their areas are the same” [0:01:22;25] and summarizes, “This is what we studied”
[0:01:26;09]. He then concludes, “based on this, we will continue our study today” [0:01:28;06].
The computer-generated illustration will remain on the screen as a resource for the duration of
the exercise. It thus becomes a locally reference-able, concrete representation of the theorem
previously discussed. It serves, in effect, as an account of their prior work.
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10 KOSCHMANN AND MORI

Excerpt 2a: Formulating the problem.
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 11

Problem Presentation

Formulating the problem. Following the review of the previous lesson, the teacher moves
to the chalkboard. Consulting his lesson plan on the desk and using a large drafting triangle as
a straightedge, he produces the drawing shown in Figure 4. As he explains, the bent line in the
middle represents the line dividing the properties of two neighbors. The property to the left of
the crooked line is labeled as belonging to “Chiba;” the property to the right as belonging to
“Bando.” These reference two students in the class selected on the spot as stand-in landowners

FIGURE 4 The exercise diagram depicting Mr. Chiba and Mr. Bando’s
initial property holdings. [00:02:32;04].
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12 KOSCHMANN AND MORI

for the purposes of the exercise.11 The crux of the problem is to find a way of equitably redrawing
the property line making it straight, but preserving the areas of the previous land holdings (“And
the borderline between these two is bent like this. We want to make it straight.” [0:02:39;17]). The
project, then, is to replace the bent property line with a straight one. The crucial issue revolves
around where to place the new line.

Excerpt 2b: Exploring the problem space, informally.

11These pseudonyms come from the transcript in the TIMSS database.
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 13

Exploring the problem space, informally. Consulting the two ersatz landowners, the
teacher solicits suggestions for where the new property line might be placed. He uses his
pointer to demonstrate alternatives by laying it flat over the exercise diagram. He positions the
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14 KOSCHMANN AND MORI

FIGURE 5 The teacher provides options for the revised property line
to Mr. Bando.

pointer to the right of the bent property line and asks Chiba, “Around here would be okay?”
[0:02:48;10]. The student responds in the affirmative and the class laughs. The teacher jokes,
“Then today’s lesson is over” [0:02:53;02]. It is understood by all, and displayed as such, that
positioning the property line in this way would unfairly favor Chiba over his fictional neigh-
bor Bando. The teacher offers a similar set of options to Bando. Beginning slightly to the left
of the bent line, he slides the pointer first to the right and then to the far left (see Figure 5)
before finding a configuration acceptable to the second student cum land holder. Bando’s selec-
tion is also greeted with laughter. This bit of role-play rests on shared understandings of what
it means to own land and the importance, having once acquired it, of not being cheated out of
it. Formulating it as a property dispute works in this way both to motivate what might otherwise
seem to be an abstract geometric theorem and to illustrate its potential power for solving practical
problems.

The previously given demonstrations were designed to show that the positioning of the new
property line was not arbitrary and that both property holders had to be treated fairly. The teacher
now invites a third student to propose a replacement property line, presumably one with a better,
geometrically based justification. Note that turning over the pointer to a student at this phase of
the exercise represents a bit of a gamble. Should the student come up with the solution being
sought, there would be nothing left for the class to do and the exercise would indeed collapse.12

Her proposal involves constructing a pair of vertical lines. The first will connect the open end-
points of the two line segments representing the bent property line (see Figure 4), forming a
triangle. The second line, drawn parallel to the first, passes through the inflection point of the
bent property line. Her proposal is that a third line positioned midway between the two parallel
lines might represent an equitable solution to the posed problem. Indeed, her approach might
superficially resemble the summarized theorem, incorporating both a pair of parallel lines and a
triangle positioned between them. Her proposal, however, sacrifices the power of the theorem,

12Or, maybe not. Were this to occur, it is likely that the teacher would challenge the class to develop an alternative
solution, there being another available.
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 15

failing to exploit its ability to predict the area of conforming triangles. The teacher now turns the
problem over to the full class. He unfurls a banner that reads, “Without changing the area, how
to change the shape.” By now employing the term “area” (menseki) instead of “land” (tochi), the
teacher orients the students to a reconsideration of the summarized theorem.

Several aspects of this problem are unspoken, but understood by all. These are taken-
for-granted features, unremarked and unremarkable, of how one solves a mathematical word
problem. For example, though stated as a property line negotiation, the solution to the prob-
lem has nothing to do with property lines per se, and this is understood from the outset. It is
also worth noting that no one proposes to solve the problem by measurement. First, given
the way in which the two properties are represented in the exercise diagram, it is not possi-
ble to estimate the areas of Chiba and Bando’s land. And, although the problem diagram was
drawn very carefully, the angles and areas shown there are understood to be inexact. Indeed,
the areas and even the shapes of the properties are arbitrarily represented. As Livingston (1983)
noted:

The solution must not only hold for the case represented on the board, but for a broad class of cases
not depicted. The problem of characterizing the mathematical object is the problem of determining
what kind of object a mathematician refers to when he proves theorems about them; what kind of
objects are circles qua circles and angles qua angles. (p. 10)

For this reason, though the assignment calls for making a new straight line to divide the prop-
erties, simply producing such a line will not satisfy the assignment. It is incumbent upon the
problem solver to show how the solution works, not only for the case shown in the exercise dia-
gram, but for others as well (cf. Herbst, 2005). Moreover, it must be demonstrated how the line
relates to and satisfies the various requirements of the problem. A sketched property line is not
a mathematically adequate solution, therefore—it must include a justification for why the line
satisfies these requirements.

The teacher first directs the students to work on the problem individually [0:03:56;23]. After
several minutes of deskwork he invites them to avail themselves of other resources in the room—
the two instructors, hint cards at the classroom front, their fellow students. During this period
of working informally, the teacher roams the room interacting with students, individually and
in small groups. This method of collaborative problem solving is one commonly employed in
Japanese mathematics classrooms (Shimizu, 2002).

The crux of the posed exercise is one of discovering how the reviewed theorem relates to
the property line issue or, stated visually, of transposing the theorem illustration onto the exer-
cise diagram. The teacher employs different ways of helping the students to achieve this. While
working with a group of three students at the board, he instructs them first to look at the theorem
illustration on the TV monitor (Figure 6a) and then directs them to reexamine the exercise figure,
but with their heads cocked to one side (Figure 6b). We see in this an instructing of a certain
way of looking, carried out in an embodied way. Later, to make visible the possibility of a tri-
angle in the problem figure, he places his pointer on the board connecting the points where the
crooked property line intersects the upper and lower boundaries of the two properties. This too
is an embodied form of instruction. Two of the students at the board will later be called upon to
present their solutions to the class.
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16 KOSCHMANN AND MORI

FIGURE 6 The teacher instructing two students on how to see the the-
orem illustration on the computer monitor (off camera to the left) in the
exercise diagram.

In preparation for the whole-class discussion to come, the teacher directs two students to
make copies of the exercise diagram on the lower region of the chalkboard, providing them with
colored chalk and straightedges [0:16:24;16–0:17:00;16]. The two solution figures they produce
constitute predrawn resources for later whole-class discussion. They are not identical. The one on
the left includes a red line; the solution figure on the right contains a yellow line. The positions
of these two lines are highlighted in Figure 7.

After approximately 10 min, the class members are asked to return to their seats. The teacher
offers the pointer to one of the members of the class, a student whom we know here as “Mr.
Manabe.”
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 17

FIGURE 7 Mr. Manabe at the board about to present his solution. The
two, pre-drawn solution figures can be seen before him on the board.
The red and yellow chalked lines, in the left and right solution figures
respectively, are highlighted using dashed lines.

Excerpt 3a: A rough start.
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18 KOSCHMANN AND MORI
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 19

An Emerging Proof-Account

A rough start. As noted earlier, merely coming up with a new property line will not suffice
as a solution for this exercise; the exercise requires producing some sort of geometric justification.
Advancing to the board Mr. Manabe (M) utilizes the predrawn solution figure on the left, the one
containing the red line (see Figure 7). The thesis to be developed is that the red line satisfies
the spoken and unspoken requirements of the posed problem. His task, then, is one of deriving
the line from the problem particulars. He starts with “This is” [0:19:47;07]. Parts of his opening
statement (kore wa desu ne::), however, consist of function words that do not translate directly in
English.

As spoken, it is an appropriate way to launch a proof-account, putting his audience on notice
of what he is about to do. But then he hesitates.

Knowing where to start a proof-account is key to the enterprise. Turning to the solution figure
on the left, he then offers, “First, we make a triangle” [0:19:50;11]. Mr. Manabe waves the pointer,
first toward the exercise diagram (seen above on the board in Figure 7) and then to the solution
figure (seen below in Figure 7). His gesture produces one as the starting point and the other as
the destination, projecting the trajectory of the presentation to come. It remains, however, for Mr.
Manabe to explain just how the original diagram was elaborated to produce the solution figure
and how these elaborations were related to the theorem reviewed by the teacher.

Unfortunately, this start is not well received by his classmates. After a brief delay, the class
breaks into laughter and one student shouts, “What are you saying?” [0:19:53;08]. An uniden-
tified student suggests that Mr. Manabe should start by constructing a parallel line. Yet another
accuses Manabe of playing to the camera [0:19:58;26]. In contrast to the orderly proposing of
counter examples described by Lakatos (1963) in his imaginary mathematics seminar, the assess-
ments offered by Mr. Manabe’s classmates would appear to be less mathematically focused and
plainly less helpful.

Why might Mr. Manabe’s proposal to “make a triangle” be greeted with derision? The theorem
introduced in an earlier lesson does involve triangles, but triangles of a special type—“triangles
that exist at the place of parallel lines.” To utilize the theorem to make claims about areas, tri-
angles must be of this special type, that is, they need to be defined in terms of certain, specified
parallel lines. So, to proceed, we must have both kinds of things—a pair of parallel lines and
some conforming triangles. Addressing his detractors, Mr. Manabe says only “You are noisy”
[0:19:54;04] and reiterates “Make a triangle” [0:19:56;04].

Excerpt 3b: A key constructed line.
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20 KOSCHMANN AND MORI

A key constructed line. What Mr. Manabe does now is trace the line going from the
point at which the crooked property line intersects the upper property bound to the point
where the crooked line intersects the lower property bound. With his face turned to the
board, Mr. Manabe says something difficult to hear [0:19:59;19] while tracing this constructed
line. As seen in Figure 7, the indicated line does indeed “make a triangle.” He draws here
upon the time-honored practice in geometry of construction. Geometric construction entails
adding new elements with specified geometric properties (cf. Livingston, 1987, 1999; Stahl,
2013).

Instead of building up the necessary pieces as he goes along, which would arguably be a little
easier to follow, Mr. Manabe must locate the constructions within a precompleted representation.
Generally speaking, the construction needs to progress from simpler structures (e.g., lines, points)
to more complex (e.g., triangles, parallel lines). So, though it might have been clearer had he
started by explaining how the line was constructed and, then, noting that it formed a triangle, what
he had said was geometrically correct, though it may have raised difficulties for his classmates
struggling to follow his presentation. We do not hear him reference the line explicitly, but its
determination is made clear through, and only through, his tracing gesture.

He now employs the constructed line to make a second. He directs “draw a parallel line on
this side as well” [0:20:05;01]. The first constructed line defines a triangle by joining the two
segments of the crooked property line and it serves as the basis for constructing a pair of paral-
lel lines. So we find our way back both to Mr. Manabe’s initial suggestion that we start with a
triangle and the suggestion from the audience that we start with a pair of parallel lines. As with
the construction of the first line, the determination of where the line is to be drawn hinges crit-
ically on his gesture with the pointer. He traces the parallel line seen on the right in Figure 7.
This line passes through the apex of the triangle just developed, as is described in the section
to follow.
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 21

Excerpt 3c: Locating the first triangle.

Locating the first triangle. At this point in the derivation, Mr. Manabe supplies a bit of
geometric terminology. Returning to the first constructed line, he states, “then make this side
the base” [0:20:07;11]. He now notes that the distance between the base and the just constructed
parallel line represents the height of the triangle [0:20:13;02]. Once again, the specification of this
distance, of the it in “and make it the height” is done gesturally by touching the first and second
constructed lines. Establishing the height of the triangle, of course, is crucial for his subsequent
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22 KOSCHMANN AND MORI

use of the theorem. These are the parameters of the structure he now labels (“This triangle”
[0:20:15;17]) while tracing the two segments of the crooked property line and the previously
specified base (see Figure 8a).

The terms base (teehan) and height (takasa) had both been introduced earlier by the teacher.
We see in the emerging proof∗ evidence of both classical and natural accountability. Mr. Manabe,
for instance, displays an orientation to classical accountability in his adoption of a geometer’s
nomenclature. But natural accountability is also reflected in the myriad ways in which his talk
and manual action display an orientation to an intrinsic and developing logic.

FIGURE 8 Graphic representation of four demonstrations produced at
the board, the numbered lines portraying the sequence of strokes traced
by the pointer. These include: (a) Mr. Manabe’s demonstration of the
reference triangle on the leftmost solution figure, (b) an incorrect tri-
angle produced by Mr. Manabe, (c) a conforming triangle, suggested
by the teacher and subsequently demonstrated by Mr. Manabe, and (d)
an alternate solution demonstrated by Ms. Ikeda on the second solution
figure.
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 23

Excerpt 3d: Locating the second triangle.
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24 KOSCHMANN AND MORI

Locating the second triangle. As Livingston (1999) explained, the prover’s task is ever
and always one of finding the proof in the figure (p. 869). The power of the theorem rests in its
ability to predict the area of all conforming triangles, that is, all triangles that have the same base
and whose apexes lie on a line parallel to that base, will have equal areas. So in this case, to find
the proof, Mr. Manabe must find a second conforming triangle within the solution figure, and
here a problem arises. First, one of the students in the classroom calls into question his designa-
tion of height for the first triangle [0:20:17;16]. Mr. Manabe does not orient to this complaint,
but instead begins, “This triangle a::nd” [0:20:15;17]. But, the thought is never completed. He
interjects, “Right!” [0:20:20;06], but then seems unclear how to proceed. “Which one was it?”
[0:20:20;06] he asks, while leaning in close to the solution figure. He then restarts with, “This
triangle and some tri-“ [0:20:21;19], but rather than introducing a new triangle, he retraces the
one he had indicated earlier. The derivation, consequently, appears to be stalled out. If Manabe
knew it before stepping to the board, a part of it, the identity of the second triangle, is now eluding
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 25

him. The key to finding that triangle is to focus on the red line which may be difficult for his audi-
ence to see. The teacher tries to direct Mr. Manabe’s attention to the triangle containing this line
[0:20:26;26].

The third constructed line builds on the two described earlier. It connects the point at which
the line forming the base of the first triangle intersects the lower property bound to the point
where the constructed parallel line intersects the upper property boundary (shown as stroke #1 in
Figure 8b). Mr. Manabe acknowledges the suggestion from the teacher, “Oh this one, right”
[0:20:28;06], but still appears unsure regarding how to define a second triangle incorporating
it. He attempts to complete the derivation step begun earlier with “this triangle and some tri-“
[0:20:21;19] and states, “their areas are::” [0:20:30;03], while tracing a new triangle as shown in
Figure 8b. Hayashi (2005) described how it is possible when producing an utterance in Japanese
to use a “postpositional particle” as a hook for incorporating objects introduced earlier in the
talk. In this case, we see Manabe using the topic marker wa in Wa:: (1.1) menseki ga:: (“Their
areas are”) to reference the pair of triangles previously introduced at [0:20:15;17] and again at
[0:20:21;19].

The traced triangle (Figure 8b) has the same height as the triangle referenced earlier
(Figure 8a), but does not share its base. It does not conform, therefore, to the requirements of
the theorem. The instructor again seeks to help. He calls out, “This side this side” [0:20:33;09],
but his suggestion is ambiguous and Manabe seeks further clarification [0:20:34;02]. The teacher
advances to the board and, using more red chalk, makes bold the third constructed line and
then similarly marks a segment of the upper property boundary [0:20:36;22]. As he does so,
he clarifies that these lines are part of the triangle he was suggesting [0:20:36;23]. Manabe traces
this triangle with the pointer (see Figure 8c) while finally completing the sentence begun ini-
tially at [0:20:17;04] and restarted at [0:20:21;19]. Repeating the designation just provided by
the teacher [0:20:36;23], he refers to it as “this side’s triangle” [0:20:38;02]. What begins in
[0:20:15;17] as an “object-of-sorts with neither demonstrable sense nor reference” (Garfinkel,
Lynch, & Livingston, 1981, p. 135), becomes, through the concerted efforts of the participants, a
reference-able entity.

Excerpt 3e: Arriving at a conclusion.
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26 KOSCHMANN AND MORI

Arriving at a conclusion. As Livingston (1987) wrote, “The identifying orderliness of the
work of a proof can be lost in too closely depicted particulars” (p. 109). A proof-account instructs
a certain line of reasoning, but part of the art of producing a proof is in determining just how much
instruction to provide. If too little, it may not be possible to follow the logic, but if too much is
provided, the proof can appear pedantic, cluttered with trivial and unnecessary steps. What would
serve as an adequate proof in a graduate seminar would obviously be quite different from what
might be acceptable in a middle school geometry class and vice versa. Proof-accounts, in this
way, are occasioned matters and entail a certain amount of “recipient design” (Sacks & Schegloff,
1979, p. 16). Drawing on the theorem, Mr. Manabe now notes that this pair of triangles have the
same area [0:20:42;25] “because their bases and heights are the same” [0:20:44;27]. He then
concludes, “So first” [0:20:46;27] “we can draw a line here” [0:20:50;14] while tracing the third
constructed line. Manabe’s dakara mazu wa is an enigmatic way of introducing a conclusion.
Prefacing it with dakara is reasonable enough. In English, so, in sentence-initial positions, is
often used to display inferential or logical connections to that that came before (Bolden, 2009;
Schiffrin, 1987). His choice of mazu wa, however, presents a puzzle. This could be translated
as “first” or “firstly” which might be a more sensible way to begin, rather than end a derivation
and, as it happens, it was the way he began this derivation [0:19:50;11]. Conjunctions such as
these play an important role in marking progress within a logical argument. By using mazu wa
in an unconventional way, Mr. Manabe may have once again made his proof account a little less
accessible. Nonetheless, the subsequent clause, “we can draw a line here” [0:20:50;14] represents
both an articulation of the solution and the termination of his derivation. Its local sense derives
from a gesture he performs with the pointer highlighting the red line on the solution figure. The
referenced line is not just any line, but a candidate solution that satisfies the requirements of
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 27

the property line problem. And the derivation just completed was produced to demonstrate this
specifically.13

Excerpt 3f: “It’s understandable enough, right?”

13As an alternative way of appreciating Mr. Manabe’s solution, try superimposing his various demonstrations at
the board captured in Figure 8 upon the theorem illustration shown in Figure 3. Recall that in Figure 6 the teacher
had the students change their frame of reference in order to more easily visualize how the theorem illustration related
to the solution figures. You can accomplish the same by rotating Figure 8 counter-clockwise 90◦. Mr. Manabe’s first
referenced triangle (Figure 8a) can then be seen as corresponding to triangle ACB in Figure 3 and the conforming triangle
(Figure 8c) to ADB. Continuing on this basis, the line segment DB would represent the new property line demonstrated
by Mr. Manabe at [0:20:50;14]. Because, by the stated theorem, triangles ADB and ACB have the same area, Chiba’s
property holdings must remain the same when using the newly straightened property line. And, if Chiba’s holdings remain
constant, it would stand to reason that the same is true of Bando’s.
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28 KOSCHMANN AND MORI

“It’s understandable enough, right?” Briefly studying that which he had just produced,
Manabe reasserts the soundness of his account, saying “Yes” three times while retracing the
line [0:20:53;13]. Despite this, his derivation may still have left too much tacit and unspoken.
In response to Mr. Manabe’s positive self-assessment (“Yes yes yes”), an unnamed student shouts,
“Huh? (What are you saying?)” [0:20:53;09]. To this, Mr. Manabe cheerfully confesses “Well I
don’t understand what I am saying” [0:20:54;00]. This exchange is followed by laughter, both on
the part of the class and from Mr. Manabe himself. The teacher then provides his own appraisal,
“It’s understandable enough, right?” [0:20:56;21]. Mr. Manabe responds, “Oh do you under-
stand?” [0:20:59;04]. Without replying, the teacher turns to the class and asks, “Is there anyone
who doesn’t understand?” [0:20:58;17]. Several students confess that they too did not really
follow Mr. Manabe’s proof-account. His presentation, therefore, ends on an unhappy note.

Although we conclude our analysis here, the lesson was not quite finished. The problem had
an alternative solution (see Figure 8d) and a second student, Ms. Ikeda, was invited to the board
to present it (Mori & Koschmann, 2012). Following this, the teacher recapped the exercise and
explained how the solutions presented by Mr. Manabe and Ms. Ikeda were related.

DISCOVERING A PROOF∗

My use of the word “rigor” is adopted from conversational usage among mathematicians where
it is used to refer to the witnessible (and, thereby, to the apparent, visible, recognizable) adequacy
of a proof in demonstrating its own truthfulness, its own objectivity, its own accountability.

—Livingston (1983, p. 43)
Having presented this analysis, it would now be useful to bring what we have seen into align-

ment with Garfinkel’s treatment of natural accountability and Livingston’s notion of proof as a
Lebenswelt pair. Mr. Manabe had been invited to the board to present a candidate solution to the
posed property-line problem. His solution was visible from the outset in the form of the red chalk
line, but to demonstrate its adequacy he was required to show how it could be derived from the
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NATURAL ACCOUNTABILITY OF A MATHEMATICS LESSON 29

stated conditions of the problem. This solution, then, was, in effect, the theorem to be proved.
The various theorems that comprise Gödel’s incompleteness proof predated Livingston’s (1983)
investigation. His thesis represented an effort to recover how a mathematician would work her
way through this finished proof. In the case at hand, however, the proof is, at least in part, being
constructed in the telling. Although we have referred to it as Mr. Manabe’s presentation, he was
clearly not the sole author. The proof-account was constructed collaboratively, building (or not
building) on suggestions made by Mr. Manabe’s classmates and incorporating crucial corrections
from the teacher. The distinction between prover and proof-follower, as a result, was a little less
clear-cut than in the example provided by Livingston.

We were able to discern elements of both classical and natural accountability being placed on
display within the analyzed fragment. The construction of the solution figure, the organization of
the presentation, the required repairs along the way all displayed an orientation to the accepted
practices of the mathematics community and, in so doing, evidenced classical accountability (see
Garfinkel, 2002, p. 188). Mr. Manabe’s denial of understanding at the end of the fragment does
not detract from this given that the accountability is a witnessible property of the proof-account
itself.

The natural accountability of the proof∗ was to be found in the relationship between the proof-
account and the practices of proving it describes. Garfinkel (2002) wrote, “The pair specifies
[the] theorem as a lived organizational thing. The pair specifies [the] theorem as the practices of
proving it” (p. 188).

But it is a specification of a peculiar sort, one that must be experienced to be appreciated.
It is for this reason that we presented our analysis as a tutorial problem. Rather than describ-
ing Mr. Manabe’s presentation in familiar geometric terms, it documented in terms of its worksite
specifics. In so doing we hoped to make it possible for the reader to experience the discovering
work that Livingston described as lying at the heart of mathematical practice. By joining Mr.
Manabe’s audience in their evaluation of the mathematical adequacy of his derivation, we come to
discover the practices of proving that the proof-account described. Despite Mr. Manabe’s uncon-
ventional start and finish, the various corrections from the audience, and his failure to recollect
a crucial part of derivation, we find a coherent line of reason being developed here. There is,
in short, a “natural analyzability and natural accountability” (Livingston, 1987, p. 112) to the
presented derivation. We would take this to be the teacher’s point when he proclaimed at the
conclusion of Mr. Manabe’s presentation, “It’s understandable enough, right?”

One might reasonably ask, What is the value in making such a discovery? After all, we have
argued that natural accountability is an indexical matter and, as a result, anything we might dis-
cover about it here is going to be irremediably tied the situated details of the situation at hand.
But, as Livingston (1987) wrote,

The practical methods of an ethnomethodological investigation are themselves made available and
discovered through that investigation, they increasingly make available and rediscover the methods
of a local production cohort in producing and managing the naturally organized ordinary activity in
which that cohort is engaged. (p. 140)

Our analysis, therefore, not only is an analysis into theirs, but also provides guidance into how
such analyses can be conducted in other settings. That is, it can be “mis-read” in the manner
described by Garfinkel, as a set of instructions for looking and listening in a new way.

We find the efforts by Michaels et al. (2008) to focus attention on the importance of cer-
tain forms of classical accountability in classroom discourse to be useful. But we fear that if
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we consider only classical forms of accountability something vital will have been left from our
appreciation of the lived work of teaching and learning mathematics. Garfinkel coined the name
natural accountability for this missing something. Our ability to ultimately come to terms with
the specification problem may well hinge upon the degree to which we develop an appreciation
of both kinds of accountability in the classroom.
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